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LIQUID CRYSTALS DERIVED FROM 2-PHENYL-ISOINDOLES. SYNTHESIS AND

CHARACTERIZATION

K.G. JOW{ AND T.J. DINGEMANS*

Abstract. 2-Phenyl-isoindole was investiga.ted as the rigid core unit in a series of a synnnetric mesogenic

molecules. When the 2-phenyl-isoindole core was terminated with a hexyl tail, no mesophase formation

could be observed. When 4-n-(tridecafluorohexyl) was used, however, we observed both monotropic and

enantiotropic phase behavior. We found that most functionalit, ies at the anhydride 5-position results in

the formation of smectic A (SmA) phases in the temperature range of 70-180°C. Functionalities at the

anhydride 4-position suppress lnesophase formation. Large substituents (-Br, -NO._,) and symmetric sub-

stitution patterns (5,6-dichloro, 4,7-dichloro and 4,5,6,7-tetrachloro) on the anhydride moiety increase the

melting point, and destabilize the mesophase. Temperature dependent X-ray diffraction experiments suggest

an interdigitated SmA packing for this family of compounds.

Key words, liquid crystals, smectic A, 2-phenyl-isoindole, fluorinated imides, self-adaptive optics and

filters

Subject classification. Structures and Materials

1. Introduction. Fluorinated polyimides are well known for their mechanical properties, therma.1 sta-

bility, and ability to survive in aggressive environments [1]. Currently, very few examples exist in which imides

are used as mesogenic building blocks in low-molar-mass thermotropic liquid crystals (LCs) of the core-tail

type. Eiselt and co-workers [2] reported a series of LC di-infides based on 3, 3, 4, 4-biphenyltetracarboxylic

dianhydride (BPDA) as the central mesogenic core. They concluded that the dianhydride core adopts the

t'rans configuration when reacted with 4-n-alkylanilines or 4-n-alkoxyanilines, and they exclusively observed

the SmA phase in the temperature range of 226-293 °C. Bialecka-Plorjanczyk and Orzeszko [3] reported

the synthesis of a series of monothio- and dithiotrimellitimides. Nematic and smectic phases were observed

in 4-cya.no substituted compounds, wherea,s only a. nematic phase was observed in the 4-decyloxy analog.

Transition temperatures for these compounds were reported to be in the range of 49-20:3 °C. Most recently

Berda.gu6 et al. [4] showed that 2-phenyl-indazole can be used as a mesogenic building block for LCs and

reported the existence of both nematic and smectic mesophases.

Herein, we present the synthesis and cha.racterization of new imide-based LCs prepared from simple

anhydrides and 4-n-(tridecafluorohexyl)aniline. This class of heterocyclic compounds are better known as

2-phenyl-isoindole-l,3-diones and have a.n asylnmetric calamitic rigid core structure (shown below) that is

conducive to mesophase formation.

*Author for corespondence. ICASE, Mail Stop 132C, NASA Langley Research Center, Hampton, VA 23681-2199 (email:

t.j.dingemansi_larc.nasa.gov). This research was supported by the National Aeronautics and Space Administration under

Contract No. NAS1-97046 while the author ,*as in residence at ICASE, Structures and Materials, NASA Langley lqesearch

Center, Hampton, VA 23681-2199.

+ Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avehue,

Cambridge, MA 02139-4307
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Potential substituents on the anhydride have to be considered as lateral substituents because no para

position is available and, depending on the position, they are placed at a 90 ° angle (4-position) or at a 30 °

angle (5-position) with respect to the molecular long axis. our main interests were to examine the effects

of the anhydride substituents on mesophase type and mesophase stability in a series of 2-phenyl-isoindoles

based model compounds.

In the first series we have modified 2-(4-n-tridecafluorohexyl-phenyl)-isoindole-l,3-dione (1) by intro-

ducing simple substituents (X= H, Me, Ogle, and NO.,) at the anhydride 5-position (I). Most anhydrides

were commercially available or could be made in one or two steps.

I X= H, Me, ()Me, NO2

Next we considered 2-(4-n-tridecafluorohexyl-phenyl)-isoindole-l,3-dione (1) with different halogen sub-

stituents (X= F, CI, Br) and we studied the phase behavior when the halogens were moved from the

anhydride's 5-position to the 4-position (II). By doing so, we have reduced the mesogen effective length

(i.e., lowered the symmetry) and in addition placed the electrostatic dipole moment at a 90 ° angle with

respect to the molecular long axis.

II

N@C6FI3

0

X= 4-F, 4-CI, 4-Br and 5-F, 5-CI, 5-Br

Finally, in the last series (III) we explored the effects of multiple halogen (X=C1) on the terminal an-

hydride moiety of 2-(4-n-tridecafluorohexyl-phenyl)-isoindole-l,3-dione (1). The mono-substituted analogs,

with chlorine in the 4- or 5-position, are asymmetric, whereas the di- and tetra-substituted analogs are

symmetric.

III X= 4,7-dichloro, 5,6-dichloro and 4,5,6,7-tetrachloro



2. Results and Discussion. Three series of 2-phenyl-isoindole-based thermotropic liquid crystals were

successfully synthesized ill high yields, using a simple one-step procedure. The structures of all compounds

were confirmed by proton, carbon, and fluorine nuclear magnetic resonance (1H-NMR, 13C-NMR, 19F-NMR)

and infrared spectroscopy (FTIR). Although we initially included 4-hexylaniline ill our studies, we could not

detect liquid crystalline behavior in any of these systems. This observation suggests that the 2-phenyl-

isoindole core by itself exhibits poor mesogenic properties. We were more successful when we switched from

4-hexylaniline to 4-n-(tridecafiuorohexyl)aniline as the terminal tail segment. As Bunn and Houwens [5]

showed, the larger fluorine atoms force a helicoidal chain conformation, and this results in a stifler chain

than its hydrocarbon analogue. In addition, the fluorinated tail is chemically incompatible with the aromatic

2-phenyl-isoindole core, which leads to microphase separation and consequently promotes the formation of

smectics [6-8].

2.1. Mesomorphic Properties. The phase behavior and DSC results of the first series of 5-substituted

2- (4- n-tridecafluorohexyl-phenyl)-isoindole - 1,3-diones are presented in Table 1.

TABLE 1

Phase transition temperatures (o C) and enthalpg's (italic) for

the 5-substituted 2- (4-n-tridecafluorohexgl-phengl)-isoindole - I, 3-diones

No. (X=) K K' SA I

• 140.1(35.1)
(1) -H

• 103.5(-27.0) • 131.6(-4.0) •

• 145.1(50.6) • 165.2(9.2) •
(2) -Me

• 102.0(-44.8) • 164.7(_9.2) •

• 133.8(5.5) • 149.9(34.9.) • 181.5(6.1) •
(3) -OMe

• lOO.2(-s.6) • lO9._(-21.o) • 18o.6(-o.2) •

• 147.5(3.4) • 179.2(42.6)
(4) -NO_

• 155.0(-40.5) •

From these results it becomes evident that the parent compound 2-(4-rt-tridecafluorohexyl-phenyl)-

isoindole-l,3-dione (1) is a poor mesogen. This compound shows a monotropic SmA phase upon cooling

only. When lateral substituents a.re introduced at the anhydride 5-position, X= -Me (2) and -OMe (3),

a.n enantiotropic SmA phase is observed that is stable over a. wide temperature range. Figure 1 shows a

DSC hea,ting and cooling scan of 5-methoxy-2- (4- n-tridecafluorohexyl-phenyl) -isoindole- 1,3-dione (3). Upon

cooling this compound shows a SmA phase from 150- 182°C, but upon cooling, the SmA range extends over

70°C (109- 181°C). This super cooling behavior is typically observed for all mesogenic 2-phenyl-isoindoles

used in this study.
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FIG. 1. Second heating and cooling trace of 5-methoxg-2-(/,,-n-tridecafluorohexyl-phenyl)-isomdole-l,3-dione

When a nitro group (X=-NO2) (4) is introduced, no mesomorphic behavior could be observed. This is

quite surprising, because the nitro functionality is a highly polarizable group and is often found to promote

mesophase formation [9]. In this case, however, we believe that the large planar nitro group promotes

crystallization, which results in a high melting temperature obscuring the underlying LC phase. The phase

behavior of the 5-substituted 2-(4-n-tridecafluorohexyl-phenyl)-isoindole -1,3-diones is summarized in Figure

2, wherein the compounds are arbitrarily plotted on the X-axis.
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FIG. 2. Mesophase ranges for the 5-substituted 2-(4-n-tridecaflt_oTvhexgl-phengl)-isoindolc-l,3-diones

The DSC results for the halogen modified 2-(4-n-tridecafluorohexyl-phenvl)-isoindole-1,3-diones are

summarized in Table 2.



TABLE 2

Phase transitio,, temperatures (o C) and enthalpg's (italic) for the

mono-haloge'nated 2-(d-n-tridecafluorohexyl-phengl)-isoindole- I. 3-diones

No. (X=) K K' Sa I

• 158.1(40.4) •
(5) 4-F

• 127.5(-26.2) •

• 126.4(26.9) • 137.5(4.90 •
(6) 5-F

• 101.8(-25.0,) • 136.5(:4.9) •

• 111.0(26.6) •
(7) 4-C1

• 69.8(-16.4) • 85.3(:1.6) •

• 143.9(3.2) • 155.2(25.4) • 164.8(6.5.) •
(8) 5-C1

• 128.7(22.2) • 163.6(-6.7,) •

• 116.4(32.2) •
(9) 4-Br

• 82.9(-17.5) •

• 174.0(38.8)
(10) 5-Br

• 141.6(-30.1) • 164.7(:6.2) •

Introducing halogens at the anhydride's 5-position, initially results in an increase in melt transition and

stabilization of the SmA phase a.s a function of increased halogen size for X= -F (6) and -CI (8). When X=

-Br (10), however, the stability of the SmA phase is slightly reduced, which is probably because the dipole

moment decreases with increasing halogen size and the tendency to crystallize.

When the halogens (X= -F,-CI and -Br) are moved fi'om the anhydride's 5-position to the 4-position, we

observe a dramatic reduction of melting temperature for all three compounds. In addition, it is interesting

to see that with the exception of the 4-C1 (7) isomer the SmA phase is completely suppressed in the 4-F

(5) and 4-Br (9) isomers. Intuitively, one would expect to see little or no change in phase behavior between

the 4-F and 5-F isomers because moving the small fluorine atom from the 5- to the 4-position does not

significantly affect the overall molecular shape. Translating the bulky chlorine and bromine atoms fi'om the

5- to the 4-position, however, reduces the overall molecular symmetry and results in a considerable drop

in melt transition. At this moment we are unable to explain why only the 4-C1 isomer (7) exhibits a LC

phase. The phase behavior of the halogen modified 2-(4-n-tridecafluorohexyl-phenyl)-isoindole-1,3-diones is

summarized in Figure 3.



E
lla

[-

240

200 -

x O

__-__C6 F13

!
160 J r_'

120

80 I _

H 4-F 5-F 4-C1 5-C! 4-Br 5-Br

Halogen Position (X) >

FIG. 3. Mesophase ranges for the rnono-halogenated 2-(_-n- tridecafluorohexyl-phenyl)-isoindole-l,3-diones

We also investigated the effects of multi-halogenation on the phase behavior of 2-(4-n-tridecafluorohexyl-

phenyl)-isoindole -1,3-dione model compounds. The DSC results are shown in Table 3.

TABLE 3

Phase transition temperatures (o C) and enthalpy's (italic) for the multi chlorinated

2- (_- n- tridecafluorohexyl-phenyl)- isoindole - I, 3- diones

No. (X=) K K' SA I

• 186.4(40.7)
(11) 5,6-C1

• 167.3(-34.0) • 169.0" •

• 140.0(18.4) • 14:4.2(19.9)
(12) 4.7-C1

' • 102.2(-30.3)

,, 239.6(45.1)
(13) 4,5,6,7,C1

• 220.2(-42.6)

* Observed by optical microscopy only

Introducing more than one chlorine atom results in a dramatic loss of mesophase stability. Figure 4

shows the phase behavior of all chlorine (X= -CI) modified mesogens. We were surprised to see that the

isotropization temperatures of the 5-C1 (8) and 5,6-C1 (11) mesogens are very similar. Placing two chlorine

atoms at the anhydride 5- and 6- position increases the strength of the molecular dipole in the direction of

the molecular long axis, which would promote mesophase stabilty. In this case, however, the two chlorine

atoms also increase the overall molecular symmetry and this promotes crystallization, which is confirmed

by the higher melting point of this compound. The result is a small monotropic SmA phase that could

be observed upon cooling only. When the chlorine atoms are placed at the anhydride 4- and 7-position

(12) the same trend is observed as for the 4-C1 (7) compound. In the 4,7-C1 compound we did not find

any mesophases, but again a significant decrease in melting point was observed. It is obvious that placing



substituents on tile 4- and 7-position results in a reduction of the aspect ratio of the molecule and therefore

a reduction in mesophase stability is observed. Perchlorination of tile anhydride moiety as in the case of the

4,5,6,7-C1 compound (13) leads to a highly symmetric compound with a very high melting point, exhibiting

no mesophase. Aga.in, the high symmetry of this compound seems to favor crystallization above mesophase

forn-Jation.

240

H 4-C1

Chlorine Substitution -->"

FIG. 4. Mesophase ranges for th.e mono-, di- and tctra-chlori_atcd

2- (4-'n- tridccafluoroh e_'gl-ph eT_gl)isoin.dole- 1,3- diones

2.2. Optical Microscopy Results. All reported mesogenic compounds exhibit a classical focal conic

texture, which is illdicative of the smectic A phase (SmA). Figure 5 shows the texture of .5-methoxy-2-(4-_-

t.ridecafluorohexyl-phenyl)-isoindole-l,3-dione (3) in the SmA phase at. 160 °C.

FIG. 5. Smectic A (SmA) focal conic te_:ture of 5-metho,vy-2-(4-n,-

t'ridecafluorohexyl-phet_,yl)-isoindole-l,3-dione at I54 °C; c,ros_sed polars and 20X.

2.3. X-Ray Diffraction Results. Figure 6 shows the X-ray diffractograln of 5-methoxy-2-(4-r_-trideca

fluorohexyl-1)henyl)-isoindole-1,3-dione (3) in the unaligned SmA phase a.t 160 °C. At.tempts to orient, the



samplesin the SmAphaseusinga strongmagneticfieldwereunsuccessful.
representativefor allmesogensandappearsto betemperatureindependent.
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FIG. 6. X-rag diffractograrn of 5-methoxy-2-(4-n-tridecafluorohexgl-phengl)-isoindole-l,3-dione in the

smectic A (SmA) phase at 154 oC.

The broad peak at the wide-angle region (2 0 --- 16 o) is indicative of liquid-like in-plane order of the

mesogens within the layers, which is typically observed for lower order smectics phases. The small angle

reflection (2 0 --_ 2.5 o) corresponds to a layer spacing (d) of_ 34 ._ . The molecular length (1) of this mesogen

in its most extended conformation is 18.1 _ as estimated by Spartan, and is confirmed by the (001) and

(002) reflections in the crystalline phase. Based on these results we believe that our data suggest a bilayer

SmA packing model with interdigitating fluorinated tails as presented in Figure 7.
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FIG. 7. Proposed bilager packing of 5-methoxy-2-(4-n-tridecafluorohexgl-phenyl)-isoindole-l,3-dione in the

smectic A (SmA) phase with interdigitating fluorinated tails.

3. Conclusion. For certain space applications a need exists for low-molecular weight thernlotropic

liquid crystalline materials that can be used in self-adaptive optics and filters. Potential candidates need

to withstand the extreme temperature fluctuations, presence of atomic oxygen, and high-energy radiation



conditionsthatexistin lowearthorbit(LEO).Mostthermotropicliquidcrystalsrelyonalkyltypeflexible
tails,but in ourapplicationsalkylgroupsdonothavetherequiredlong-termstability.Weare,therefore,
exploringthepossibilityofusinglow-molecularweightimideswithperfluorinatedtails.Wehavesynthesized
andcomparedseveralseriesof2-(4-n-tridecafluorohexyl-phenyl)-isoindole-l,3-dioneliquidcrystals.Wefound
that2-(4-_-tridecafluorohexyl-phenyl)-isoindole-1,3-dionebasedliquidcrystalsareabletoformstableSmA
phaseswithaccessibletemperatureranges(70-180°C). Although many different functionalities are tolerated

at the anhydride's 5-position, substituents at the anhydride 4-position and multiple halogen substitution

destabilize the SlnA phase. X-ray diffraction experiments suggest an interdigitated bilayer SmA packing for

this family of compounds.

4. Experilnental.

4.1. Instrumentation. The structures of the final products were confirmed using 1H-NMFI., _:_C-NMR,

and I_'F-NMt/spectroscopy. The spectra, were recorded using a Bruker Avance 300 spectrometer (300 MHz),

and the infrared spectra, were collected using a. Nicolet Magna-IR. Spectrometer 750.

Transition temperatures were determined using a Perkin Ehner Pyris differential scanning calorimeter,

calibrated with indium (99.99%)(mp 156.6 °C, AH=28.315 J/g) and tin (99.99%)(mp 232.0 °C, AH=54.824

J/g). Heating and cooling scans were recorded at 10 °C/rain.

Mesophases were identified with an Olympus BH-2 optical microscope, equipped with a. Mett.ler Toledo

FP82H hot stage. Samples were examined between glass microscope slides.

Variable temperature X-ray diffraction analysis was carried out with an Enraf Nonius FR 590 system

equipped with a two-diinensional image plate detector (2500 x 2500) pixels, 80 #m resolution. Unaligned

samples were analyzed using monochromatic Cu-Ko: (t=1.54 ._) radiation at various telnperautures. A

Mettler Toledo FP82H hot stage was used to control the temperature.

4.2. Materials. All start materials were obtained from Aldrich, with the exception of 1-iodotridecafluoro

hexane, 4-iodoaniline (Fluka), and 4-chlorophthalic anhydride (TCI). Both 3-bromophthalic anhydride and

4-methoxy phthalic anhydride were synthesized according to a procedure reported by Soucy et al. [10], and

4-r_- (tridecafluorohexyl)anilil_e was prepared according to Yoshino et al [11].

All LC model compounds were synthesized as outlined in Scheme 1. The amic acid intermediate was

formed in the initia.1 room temperature step, and the temperature was raised to reflux, the amic acid was

dehydrated to the corresponding imide. Although the reaction appeared to be finished after 4 hours (TLC

90/10 hexane/ethyl acetate), we refluxed the reaction mixtures overnight for convenience. This procedure

is simple, and gives the desired products in high yields. The products often crystallized fl'om the reaction

mixture upon cooling, which minimized product work-up.
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SCHEME 1. Synthesis of the 2-phengl-isomdole model compounds.

4.3. Synthesis.

3-Bromophthalic anhydride A three-neck flask equipped with a magnetic stir bar and reflux condensor

was charged with 3-bromo-o-xylene (3 g, 0.016 mol), cetyltrimethylammonium bromide (0.01 g, 0.0:3 mmol)

and 60 ml water. Potassium permanganate (10 g, 0.063 mol) was added in three portions and the reaction

mixture was stirred at 60 °C for 24 h. The warm reaction mixture was filtered and the filtrate was acidified

with 10 ml HC1 (37%). The volume was reduced to 50% and extracted with diethyl ether (3x), and the

combined ether layers were dried over MgSO4. The solvent was removed by distillation and an off-white

product was collected and refluxed in acetic anhydride for 4 11. Upon cooling, colorless crystals formed. Yield:

1.81 g (50%); mp 135 °C (mp 134 °C [10]); FT-IR (KBr) 1772 (C = Oanhydride), 1858 (C= Oanhydride)

-1
cm

4-Methoxyphthalic anhydride Same procedure as described for 3-bromophthalic anhydride. Oxidation

was complete after 5 h. Yield: 4 g (35%); mp 95 °C (rap 95 °C [10]); FT-IR (KBr) 1774 (C = O_hyd_d_),

1847 (C= Oanhydride) cnl-1

4-n-(Tridecafluorohexyl)aniline A 250 ml 2-neck flask equipped with reflux condensor and nitrogen inlet.

was charged with 1-iodotridecafluorohexane (67.9 g, 0.152 tool), 4-iodoaniline (30.0 g, 0.137 tool), copper

bronze (29.0 g, 0.456 tool) and 150 ml DMSO. This suspension was heated at 120 °C for 12 h. under a

nitrogen atmosphere. The reaction mixture was cooled to 50 °C and the copper iodide and excess copper

bronze were removed by vacuum filtration. Water (100 nil) was added to the filtrate and the aqueous layer

was extracted (3x) with diethyl ether. The ether layer was washed with water and dried over MgSO4 and

the solvent was removed by distillation. The title compound was purified by vacuum distillation (60 °C/25

mTorr). Yield: 37.5 g (61%). _H-NMR (CDCI3) 6 (ppln): :%.85 (s, 2H), 6.57 (d, 2H, J=9Hz), 7.23 (d, 2H,

J=8Hz); _3C-NMR 5 (ppm) 114.23, 117.77, 118.03, 128.19, 128.27, 128.36, 149.73; _gF-NMR 6 (ppm)" -82

(_o-CF3),-110 (e-CF_),-122 (5-CF,),-123 (7-CF.,),-125 (/3-CF_,),-127 (a-CF;)

Representative procedure for the synthesis of 2-(4-n-tridecafluoro-phenyl)-isoindole-1,3-dione (1.) A 50 ml

one-neck flask equipped with a magnetic stir bar and reflux condenser was charged with phthalic anhydride

(0.441 g, 3 mmol), 4-n -(tridecafluorohexyl)aniline (1.44 g, 3.5 mmol) and 20 ml glacial acetic acid. This

mixture was stirred for 2 h. at room temperature followed by refluxing (12 h.). Upon cooling colorless

crystals formed which were collected by filtration and recrystallized once more from ethanol. Yield 1.44 g

(89%); t_ = 0.3; _H-NMR (CDCI3) 6 (ppm): 7.67 (d, 2H, J=8Hz), 7.73 (d, 2H, J=9Hz), 7.81 (t, J=3Hz.

1H), 7.82 (s, 1H), 7.95 (s, 1H), 7.97 (t, J=3Hz, 1H); _3C-NMR 5 (ppm): 123.9, 126, 127.6, 127.7, 131.3,

10



134.6, 135.1, 166.5; 19F-NMR (_ (ppm): -81 (_'-CF3),-111 (_-CF=,),-122 (5, 9-CF=,),-123 (fl-CF2),-126

(a-CF2); FT-IR (KBr) 1717 (C= Oimide), 1782 (C = Oi,_id¢) cm -1

Analytical data of S-methyl-2-(4-n-tridecafluorohexyl-phcny!)-i._omdole-l,3-dione (2) Yield: 1.45 g (87%);

t,. = 0.18; 1H-NMR (CDC13) _ (ppm): 2.55 (s, 3H), 7.59 (d. 1H, J=7Hz), 7.66 (d, 2H, 3=gHz), 7.71 (d,

2H, J=9Hz), 7.76 (s, 1H), 7.84 (d, 1H, J=7Hz); _3C-NMR 5 (ppm): 22.6, 123.7, 124.3, 125.9, 127.4, 127.5,

127.6,128.7, 131.6,135.1,146, 166.5,166.6; _gF-NMR d (ppm): -81 (w-CF3),-111 (_-CF2),-122 (_, 7-C,F_),

-123 (fl-CF2),-127 (a-CF2); FT-IR (KBr) 1726 (C = Oimide), 1781 ((5' = Oimide) C1]]-I

Analytical data of 5-methoxy-2-(4-n-tridecafluorohcxyl-phcnyl)-isoindole-l,3 -dione (3) Yield: 1.61 g

(94%); t,. = 0.16; aH-NMFI. (CDC13) 5 (ppm): 3.95 (s, 3H), 7.25 (dd, 1H, J=6Hz), 7.42 (d, 1H, J=3Hz), 7.65

(d, 2H, J=gHz), 7.71 (d, 2H, J=8Hz), 7.86 (d, 1H, J=8Hz); 13C,-NMlC/. 5 (ppm): 54.1, 56.2, 108.3, 120.7,

123.2, 125.6, 125.9, 127.6, 134, 135.3, 165.1, 166.2, 166.4; _'F-NMI:/. _ (ppm): -81 (a;-CF3),-111 (e-C, Fe),

-122 (5, "_'-CF2 ), -123 (fl-CF__ ), -127 (o'-CF2); FT-IR. (NBr) 1718 (C = Oi,,id_), 1782 (C = Oi,,_,:a_) cm -1

Analytical data of 5-nitw-2-(4-n-tridecafluorohexgl-phenyl)-isoindole-l,3-diorte (4) Yield: 1.32 g (75%);

t,. = 0.25; 1H-NMR. (CDC13) 5 (ppm): 7.67 (d, 2H, J=8Hz), 7.76 (d, 2H, J=9Hz), 8.18 (d, 1H, J=8Hz),

8.69 (dd, 1H, J=2Hz), 8.78 (d, 1H, J=2Hz); 13C-NMR 5 (ppm): 118.0, 123.9, 124.6, 126.6, 127.4, 128.5,

131.4, 133, 134.3, 150.7, 162.9, 163.2; 19F-NMR 5 (ppm): -81 (w-CF3),-111 (_-CF_),-122 (5, I,'-C,F_),-123

(_3-CF_),-126 (o'-CF2); FT-IR (KBr) 1717 (C = Oi,_id_), 1780 (C= Oi,,_.id_) cm -_

Analytical data of 4-fluoro-2-(4-n-tridecafluo,vhexyl-phenyl)-isoi,_dole- 1,3-dione (5) Yield: 1.54 g (92%);

t,. = 0.11; 1H-NMR. (CDCla) _ (ppm): 7.46 (tt, 1H, J=2Hz), 7.64 (d, 2H, J=gHz), 7.72 (d, 2H, J=8Hz),

7.8 (in, 2H); 13C-NMR. 5 (ppm): 120, 120.1, 122.7, 123, 126, 127.7, 133.4, 134.6, 137, 137.1, 156, 159.6,

163.1, 16.5.3; _gF-NMI:/. 5 (ppm): -81 (a-CF3),-111 (c-CF2),-112 (F-Ar),-122 (5, 7-CF2),-123 (_-CF2),

-127 (ct-CF2); FT-IR (KBr) 1724 (C = O_,,_), 1784 (C = O,:mid_) cm -1

Analytical data of 5-fluoro-2-(4-n-tridecafluo_vhexyl-pheT_.yl)-isoindole- I, 3-dione (6) Yield: 1.49 g (89%);

t_ = 0.34; 1H-NMR (CDCI3) 5 (ppm): 7.48 (tt, 1H, J=2Hz), 7.64 (m, 1H), 7.65 (d, 2H, J=8Hz), 7.73 (d,

2H, J=8Hz), 7.98 (q, 1H, J=4Hz); lSC-NMR. 5 (ppm): 111.4, 111.8, 121.6, 121.9,125.9, 126.3, 126.4,127.7,

134.1, 134.9, 164.9, 165.2, 165.4, 168.3; 19F-NMR 5 (ppm): -81 (w-CFa),-101 (F-At),-111 (e-CF2),-122 (5,

7-CF_,),-123 (_q-CF_,),-126 (o'-CF2); FT-IF/. (h:Br) 1717 (C = Oimide), 1784 (C = Oimide) C1"n-I

Analytical data of 4-chlo'ro-2-(4-n-tridecafluo'rohexyl-phenyl)-isoindole-l,3-dionc (7) Yield: 1.1.5 g (66%);

t,. = 0.25; _H-NMR.(CDCla) d (ppm): 7.69 (m, 6H), T.88 (t, 1H, J=4Hz); _3C-NMR5 (ppm): 122.5, 126.2,

127.2, 127.7, 128.4, 132.3, 133.6, 134.9, 135.6, 136.5, 164.3, 165.3; _F-NMR d (ppm): -81 (uv-CF3),-111

(_-CF2),-122 (_, 7-CF.,),-123 (/3-CF2),-127 (o'-CF,); FT-IR (KBr) 1721 (C = O_,,._d_), 1776 (C = O,;,,.;d_)
-1

C 11]

Analytical data of 5-chlo_v-2-(4-n-tridecafluo_vhexyl-phenyl)-isoindole-l,3-dione (8) Yield: 1.66 g (96%);

t,. = 0.34; 1H-NMR (CDC13) 6 (ppm): 7.65 (d, 2H, J=9Hz), 7.73 (d, 2H, J=gHz), 7.77 (dd, 1H, J=8Hz),

7.90 (d, 1H, J=gHz), 7.94 (d, 1H, J=2Hz); _3C-NMR 5 (ppm): 124.2, 125.0, 125.9, 127.7, 128.1, 129.3,

132.9,134.6, 134.8,141.4, 165.2,165.5; _9F-NMR _ (ppm): -81 (w-CF3),-111 (_-CF__),-122 (d, ?'-CF2 ), -123

(/3-CF2), -127 (c_-CF_); FT-IR (KBr) 1717 (C = Oimide), 1773 (C = Oim.ide) Cl-l]-i

Analytical data of 4-bromo-2-(d-n-tridecafluorohexyl-pheny!)-isoindole- 1,3-dione (9) Yield: 0.54 g (79%);

t,. = 0.14; _H-NMR (CDCl3) _"(ppm): 7.70 (m, 5H), 7.93 (2, 2H, J=7Hz); _3C,-NMI_, 5 (ppm): 119.4, 123.1,

126.2,127.8,128.4,129, 133.8,135,135.5,139.7,164.7,165.1; _gF-NMI_. 5 (ppm): -81 (w-CF3),-111 (e-CF2),

-122 (d, "7-CF2 ), -123 (,3-CF2),-127 (o.-CF2); FT-IR (I,:Br) 1716 (C= Oimide) C1TI-J

Analytical data of 5-bromo-2-(d-_-tridecafluorohexyl-phenyl)-isoindole-l,3 -dione (10) Yield: 1.71 g

(92%); t,,. = 0.41; aH-NMt/, (CDC13) d" (ppm): 7.64 (d, 2H, J=9Hz), 7.72 (d, 2H, J=8Hz), 7.82 (d, 1H,



J=7Hz), 7.93 (dd, 1H, Y=9Hz), 8.09 (d, 1H, Y=lHz); 13C-NMR 5 (ppm): 125.4, 126.1, 127.4, 127.9, 128,

129.8, 130, 133.1, 135, 137, 165.4, 165.9; 19F-NMR 5 (ppm): -81 (w-CF3),-111 (c-CF_,),-122 (5, 7-CF2),

-123 (_-CF2),-127 (a-CF2); FT-IR (KBr) 1717 (C = O_mide), 1717 (C = O_mide), 1769 (C = Oim_de) cm -1

Analytical data of 5,6-dichloro-2-(4-n-tridecafluorohexyl-phenyl)-isoindole-l,3-dione (11) Yield: 1.75 g

(96%); tr = 0.48; 1H-NMR (CDC13) 5 (ppm): 7.63 (d, 2H, J=9Hz), 7.72 (d, 2H, J=9Hz), 8.04 (s, 2H);

_3C-NMR 5 (ppm): 125.9, 127.8, 130.4, 134.7, 139.8, 164.6, 1.86.4; 19F-NMR 5 (ppm): -81 (as-CF3),-111

(_-CF2),-122 (5, 7-CF2),-123 (_-CF2),-127 (c_-CF2); FT-IR (KBr) 1723 (C = O_,_de), 1785 (C = Oi,_d_)
-1

C Ill

Analytical data of 4,7-dichloro-2-(_-n-tridecaflu°r°hexyl-phenyl)-is°ind°le-I,3-di°ne (12) Yield: 1.67 g

(91%); tr = 0.59; 1H-NMR (CDC13) 5 (ppm): 7.6-7.9 (m, 6H); 13C-NMR 5 (ppm): 126.1, 127.6, 128.4,

130.6, 134.3,137, 162.7; _gF-NMR 5 (ppm): -81 (_-CF3),-111 (c-CF_o),-122 (5. "),-CF,),-123 (_-CF2),-127

(c_-CF2); FT-IR (KBr) 1716 (C = Oimid_) cm -1

Analytical data of 4,5,6,7-tetrachloTv-2-(_-n-tridecafluorohexyl-phenyl)-isoindole-l.3-dione (13) Yield:

1.93 g (95%); t,. = 0.37; 1H-NMR (CDC13) 5 (ppm): 7.62 (d, 2H, J=gHz), 7.74 (d, 2H, J=SHz); 13C-NMR

5 (ppm): 126, 126.7, 127.7, 130.2, 134, 140.8, 161.8; 19F-NMR 5 (ppm): -81 (_-CF3),-111 (c-CF_,),-122 (5,

_/-CF2),-123 (/_-CF2),-126 (c_-CF,); FT-IR (KBr) 1717 (C = O_mide) cm -_
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